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ABSTRACT Echo state networks (ESNs) have wide applications in chaotic time series prediction. In the
ESN, if the smallest singular value of the reservoir state matrix is infinitesimal, the ill-posed problem
might occur during the training process. To overcome this problem, an adaptive Levenberg–Marquardt (LM)
algorithm-based echo state network (ALM-ESN) is developed. In the developed ALM-ESN, a new adaptive
damping term is introduced into the LM algorithm. The adaptive factor is amended by the trust region
technique, furthermore, convergence analysis, and stability analysis are performed. Moreover, to make the
inputs fall within the active region of the activation function and improve the learning speed, a weight
initializationmethod using linear algebra is deployed to determine the appropriate input weights and reservoir
weights. Simulations demonstrate that the ALM-ESN can overcome the ill-posed problem. Furthermore,
it exhibits better performance and robustness for chaotic time series prediction than some other existing
methods.

INDEX TERMS Echo state network, adaptive Levenberg-Marquardt algorithm, trust region technique,
weight initialization, chaotic time series prediction.

I. INTRODUCTION
Chaos is a universal phenomenon in nature and human
society. Chaos theory can give an appropriate means to
demonstrate the properties of dynamic systems [1]. There-
fore, research on chaotic time series prediction is very signif-
icant [2]–[4]. Many studies have been performed on chaotic
time series prediction using neural networks (NNs), such
as the fuzzy neural network (FNN) [5], the support vector
machine (SVM) [6], the recurrent neural network (RNN) [7]
and the echo state network (ESN) [8]. These methods can the-
oretically approximate dynamic systems with any arbitrary
accuracy. Among these models, the ESN has been paid a
growing amount of attention. In the ESN, only the weights
from the reservoir to the output layer need to be tuned by
the least squares method, while the input weights and reser-
voir weights remain unchanged once generated. Unlike the
RNN, the ESN can overcome the local minima and gradient
vanishing problems [8], and thus it exhibits better perfor-
mance than other traditional neural networks. Based on

these advantages, the ESN has numerous successful appli-
cations such as Sunspot prediction [9], human motion
modelling [10], wireless service [11], online learning con-
trol [12] and electric load forecasting [13].

Although the ESN has many advantages, some problems
still need to be solved. For example, the ill-posed prob-
lem might occur during the learning process, which would
weaken the generalization ability of the ESN. There are some
reasons for this limitation provided below. First, since the
input weights and reservoir weights are randomly generated,
this random weight initialization can make the inputs fall
within the saturation region of the activation function and
result in the ill-posed problem. Second, the pseudoinverse
serves as the common training method for the ESN [8]. When
the smallest singular value of the reservoir state matrix is
infinitesimal, the ill-posed problemmight happen. To address
this problem, theweight initializationmethod for determining
the optimal region of initial weight values and the readout
training method for the ESN are considered in this paper.
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Generally, the input weights and reservoir weights are
important for the learning speed and performance of the
ESN [14]. Since the activation function of the reservoir
is hyperbolic tangent in the ESN, according to the sen-
sitive area distribution of the hyperbolic tangent function,
small weights can make the sensitive area have a certain
width. If the input weights and reservoir weights are small,
many reservoir neurons will fall within the active region
of the activation function. Otherwise, if the scaling is very
large, they will stay in the saturation region, resulting in the
ill-posed problem. Therefore, it is necessary to determine the
appropriate input weights and reservoir weights to carry out
weight initialization. Several methods have been developed.
Using the independent component analysis, the optimal hid-
den layer’s initial weights are given for the multilayer per-
ceptron and the salient feature components are obtained from
the input data [15]. Using the mutual information method,
weights are initialized for the FFNN [16]. It is noted that
the above-mentioned weight initialization method may have
a high computational burden. Thus the developed method
based on the Cauchy inequality is given. This developed
algorithm is computationally efficient and can ensure the
output lies in the active region of the activation function.

To compute the proper output weights in the ESN, some
methods have been developed, such as the pseudoinverse
solution [8] and the singular value decomposition (SVD) [9].
In these methods, if the smallest singular value of the reser-
voir state matrix tends to become zero, the state matrix
does not have full column rank, resulting in the ill-posed
problem. Then, to address this issue, some regularization
methods, such as the l2 penalty (ridge regression [17], also
called Tikhonov regularization) (RR-ESN) [18], [19] and the
l1 penalty (Lasso-ESN) [20], have been applied to improve
the generalization ability. However, the RR-ESN has dif-
ficulties in directly obtaining the optimal ridge parameter.
Since it is non-convex, some suboptimal solutions will
be obtained. To effectively optimize the output layer con-
nection and eliminate unnecessary output layer connec-
tion, some evolutionary algorithms, such as the genetic
algorithm (GA) [21] and binary particle swarm optimiza-
tion (BPSO) [22], are employed. However, evolutionary algo-
rithms suffer from high computational complexity and tend
to experience premature convergence. According to [23],
it is known that the generalization ability degrades due to
large output weights. Therefore, it is necessary to solve
the large output weights to avoid the occurrence of the
ill-posed problem. On the other hand, the LM algorithm
is one of the most successful algorithm in increasing the
convergence speed and avoiding the occurrence of ill-posed
problem [24], [25]. Using the LM algorithm, some satisfac-
tory results have been obtained and good convergence can be
ensured. In this paper, the output weights are computed by the
LM algorithm to replace the linear regression. Furthermore,
a new damping term is adaptively given (called ALM-ESN),
where the adaptive factor is amended by the trust region
technique.

The rest of this paper is organized as follows. A short
review of the classical ESN and an improved ESN based on
the LM algorithm is given in Section II. The convergence
analysis and stability analysis of the ALM-ESN are shown
in Section III and Section IV, respectively. Some experiments
are conducted to illustrate the performance of the developed
ALM-ESN compared to other existing models in Section V.
Some conclusions are presented in Section VI.

FIGURE 1. The basic architecture of the OESN. The dashed connections
are calculated by linear regression.

II. THE DEVELOPED ESN
A. THE ORIGINAL ESN
The original ESN (OESN) [8] has an input layer, reservoir
layer and readout layer, as shown in Fig.1 (without feedback
connections). The corresponding recursive formula of the
OESN is given as follows:

x(n) = g(Wx(n− 1)+Winu(n)), (1)

y(n) = Wout (x(n),u(n)). (2)

where u(n) ∈ RK denotes the external input, x(n) ∈ RN

represents the reservoir state, y(n) ∈ RL is the network
prediction output and z(n) ∈ RL is the corresponding desired
output. g is the activation function of the reservoir, which is
chosen as the hyperbolic tangent function. The input weight
matrix Win

∈ RN×K and the reservoir weight matrix W ∈
RN×N are randomly generated, and the output weight matrix
Wout

∈ RL×(K+N ) needs to be calculated using the sim-
ple linear regression. The internal state can be provided as
X = [X(1),X(2), . . . ,X(P)]T (P is the size of training sam-
ples), where X(n) = [x(n)T , u(n)T ]T . The desired output is
Z = [z(1), z(2), . . . , z(P)]T . For a given training samples set{
(u(n), z(n))|u(n) ∈ RK , z(n) ∈ RL

}
, the output weights can

be calculated as

Wout
= (X+Z)T = ((XTX)−1XTZ)T . (3)

where X+ is the Moore-Penrose generalized inverse of the
internal state matrix X.
Using the SVD [9], the reservoir state matrix can be

decomposed as X = A3BT , where A and B are both
orthogonal matrices, 3 = diag(λ1, λ2, . . . , λQ), λ1 ≥ λ2 ≥
. . . ≥ λQ > 0 are the nonzero singular values of X. Then
X+ = B3−1AT , and the corresponding output weights can
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be rewritten as

Wout
= (X+Z)T = (B3−1ATZ)T =

Q∑
i=1

1
λi
b(i)a(i)T z(i)

(4)

where a(i) and b(i) are the i-th column of A and B, respec-
tively. From formula (4), it is known that if the smallest
singular value of X is close to zero, the output weights are
very large, which is ill-posed. As a result, the ESN has bad
stability and poor generalization ability.

B. WEIGHT INITIALIZATION
The initial weights have been regarded as one of the most
important factors to improve the learning speed and perfor-
mance of neural networks. In the traditional ESN, the input
weight and reservoir weight obey the uniform distribution
in the interval [−1, 1] [8]. To test the performance of the
network with different weight intervals, the Mackey-Glass
system dx(t)

dt =
ax(t−τ )

1+xn(t−τ ) + bx(t) is selected [9]. Fig.2 shows
the training ability and generalization ability with differ-
ent weight interval. Suppose the input weight and reservoir
weight obey the uniform distribution in the interval [−β, β].
As shown in Fig.2, when β increases, the mean testing error
fluctuates. The mean testing error is at its minimum when
β equals 0.3, while the mean training error has a relatively
steady change. It means that the weight interval is very impor-
tant for network performance. Therefore, it is necessary to
perform weight initialization to determine the optimal weight
interval.

FIGURE 2. Training and testing error for the Mackey-Glass system.

Fig.3 shows the curve of hyperbolic tangent function.
To ensure that the outputs fall within the active region,
the weight should be initialized, resulting in a smaller testing
error. The magnitudes of the initial weights are evaluated by
the following problem

−s̄ ≤
N∑
j=1

wijxj,p−1 +
K∑
k=1

winikukp ≤ s̄ (i = 1, · · · ,N ), (5)

where winik is the (i, k)-th element of Win, wij is the (i, j)-th
element of W, ukp(p = 1, · · · ,P) is the k-th element of and

FIGURE 3. Hyperbolic tangent function.

xj,p−1(p = 1, · · · ,P) is the j-th element of x(p − 1) (p =
1, · · · ,P).

In this paper, the active region is assumed to fall within
the region, where the derivative of the reservoir activa-
tion function is more than 2% of the maximum derivative,
i.e., s̄ ≈ 2.65. To determine the optimal weight interval,
the following theorem is given.
Theorem 1: The input weights and reservoir weights are

supposed to obey the independent uniform distribution with
zero mean. If K∑
k=1

(ukp)2 +
N∑
j=1

(xj,p−1)2

 K∑
k=1

(winik )
2
+

N∑
j=1

(wij)2

 ≤ s̄2,
the input and reservoir weight interval fall within [−β, β],
where β = min

p=1,··· ,P
βp,

βp ≤ s̄

√√√√√√
3

(K + N )

(
K∑
k=1

(ukp)2 +
N∑
j=1

(xj,p−1)2
) .

Proof: From inequality (5), it can be got that N∑
j=1

wijxj,p−1 +
K∑
k=1

winikukp

2

≤ s̄2,

Using the Cauchy inequality, N∑
j=1

wijxj,p−1 +
K∑
k=1

winikukp

2

≤

 K∑
k=1

(ukp)2 +
N∑
j=1

(xj,p−1)2

 K∑
k=1

(winik )
2
+

N∑
j=1

(wij)2


≤ s̄2. (6)

For the p-th samples, if the input weight and reservoir
weight obey the independent uniform distribution with zero
mean in the interval [−βp, βp], from the law of large numbers,
it can be obtained that

K∑
k=1

(winik )
2
≈ E(

K∑
k=1

(winik )
2) = K · var(winik ) =

Kβ2p
3
. (7)
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Similarly,

N∑
j=1

(wij)2 ≈
Nβ2p
3
. (8)

Then

βp ≤ s̄

√√√√√√
3

(K + N )

(
K∑
k=1

(ukp)2 +
N∑
j=1

(xj,p−1)2
) , (9)

Let

β = min
p=1,··· ,P

βp. (10)

C. ALM-ESN
The LM algorithm can combine the advantages of the steepest
descent method and Gauss-Newton method [25]. It not only
possesses the speed advantage of Gauss-Newton method but
also has the stability of the steepest descent method. Using
the approximate second-order derivative, the LM algorithm
converges much faster than the first-order gradient method.

The calculation of the output weights Wout based on the
LM algorithm is equivalent to minimizing the objective func-
tion E(Wout ), which can be defined as follows:

E(Wout ) =
1
2

P∑
p=1

M∑
j=1

(ypj − d
p
j )

2
=

1
2

Q∑
q=1

e2q, (11)

where eq = yqj − dqj , y
q
j is the desired output, and dqj is the

network output.
During each iteration, the output weights Wout will be

replaced by the new one. The update rule based on the LM
algorithm can be written as follows:

Wout (k + 1) =Wout (k)− (JTk Jk + µkI)
−1JTk ek , (12)

where Jk is a Jacobi matrix, ek is an error vector, and µk is a
positive damping term.

ek , e(Wout (k)) = (e1, e2, · · · , eQ)T , (13)

Jk , J(Wout (k)) =



∂e1
∂wout1

∂e1
∂wout2

· · ·
∂e1

∂woutK+N
∂e2
∂wout1

∂e2
∂wout2

· · ·
∂e2

∂woutK+N
...

...
...

∂eQ
∂wout1

∂eQ
∂wout2

· · ·
∂eQ

∂woutK+N


.

(14)

According to (12), since µk is a positive damping term,
JTk Jk + µkI is nonsingular, which can avoid the ill-posed
problem. There are many choices for the damping term µk .
However, there is no general rule in the selecting method
of the damping term. In [26], the parameter is chosen as
µk = ‖ek‖2, and it can be shown that the LM algorithm

possesses quadratic convergence. However, the damping term
µk = ‖ek‖2 (if no other specified, the operator ‖·‖ refers to
standard l2 norm in this paper) has some drawbacks. If the
sequence trends towards the solution set, µk = ‖ek‖2 may
be less than the machine accuracy. Therefore, it may have
no effect. Moreover, µk = ‖ek‖2 may be very large when
the sequence deviates from the solution set, and the step dk
will approach zero. Consequently, the iteration speed has no
advantage. In [27], the parameter is chosen as µk = θ ‖ek‖+
(1 − θ )

∥∥JTk ek∥∥ (θ ∈ [0, 1]) and has a local error bound.
It has been shown that the sequence converges quadratically,
however, the global convergence is not considered.

Based on these observations, to obtain an appropriate iter-
ation step dk and increase the convergence speed, a new
damping term is chosen as µk = αk

∥∥JTk ek∥∥δ with δ ∈ [1, 2],
where αk is an adaptive factor. The trust region technique is
used to ensure the global convergence. The actual reduction
and predictive reduction of the objective function can be
defined as follows:

Aredk = ‖ek‖2 −
∥∥e(Wout (k)+ dk )

∥∥2 , (15)

Predk = ‖ek‖2 − ‖ek + Jkdk‖2 . (16)

The ratio rk =
Aredk
Predk

is important to adopt the trial step and
update the parameter αk between these reductions.
Based on the LM algorithm, each iteration may be

described as follows.
Wout (k + 1) =Wout (k)+ d(k),
dk = −(JTk Jk + µkI)

−1JTk ek ,

µk = αk
∥∥JTk ek∥∥δ , δ ∈ [1, 2].

(17)

The main steps of the ALM-ESN can be summarized as
follows.
Algorithm 2:
Step 1: Determine the input weight and reservoir weight

interval [−β, β] using inequality (9) and equation (10).
Step 2:Randomly create a reservoir weight matrixW0 with

the given sparsity and reservoir size in the interval [−β, β].
Scale W0 to W = (αW/ρ(W0))W0, where 0 < αW < 1
and ρ(W0) is the spectral radius ofW0. Initialize the internal
state x(0).
Step 3: Randomly produce an input weight matrix Win

according to a uniform distribution in the interval [−β, β],
initialize the output matrix Wout (0).
Step 4:Obtain the internal states by the external input as (1)

from the initial transient nmin.
Step 5: Compute the network output, the error vector ek ,

the objective function E(Wout ) and the Jacobi matrix Jk .
Step 6: Given ε ≥0, α1 > m > 0, 0 ≤ p0 ≤ p1 ≤ p2 < 1,

if the norm of energy function’s gradient
∥∥JTk ek∥∥ ≤ ε, stop;

otherwise compute dk = −(JTk Jk + µkI)−1JTk ek , where
µk = αk

∥∥JTk ek∥∥δ , δ ∈ [1, 2], ε = 10−6, α1 = 10−7,
m = 10−8, p0 = 0.0001, p1 = 0.25, p2 = 0.75.
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Step 7: Compute rk = Aredk/Predk , let

Wout (k + 1) =

{
Wout (k)+ dk , if rk > p0,
Wout (k), otherwise.

Step 8: Compute

αk+1 =


4αk , if rk < p1,
αk , if rk ∈ [p1, p2],

max{
αk

4
,m}, if rk > p2.

go to Step 5.
Step 9: Test the trained ALM-ESN.

III. CONVERGENCE ANALYSIS
Let

e(Wout ) = 0. (18)

Suppose the solution of (18) is nonempty and denote by�.
It is obvious that

dk = −(JTk Jk + µkI)
−1JTk ek , (19)

is a solution of

min
d
θk (d) = ‖Jkd+ ek‖2 + µk ‖d‖2 . (20)

Define

1k =

∥∥∥(JTk Jk + µkI)−1JTk ek∥∥∥ . (21)

It can be determined that (12) is equivalent to the following
trust region problem:

min
d
‖Jkd+ ek‖2

s.t. ‖d‖ ≤ 1k . (22)

Therefore, the LM algorithm is equivalent to the trust
region method. To study the convergence properties of the
algorithm, we suppose that the following two assumptions
and lemma are satisfied.
Assumption 3: ek is continuously differentiable. Both ek

and its Jacobi matrix Jk are Lipschitz continuous, i.e., there
exist positive constants L1 and L2 such that
(a)

∥∥J(Wout
1 )− J(Wout

2 )
∥∥ ≤ L1

∥∥Wout
1 −Wout

2

∥∥ ,
∀Wout

1 ,Wout
2 ;

(b)
∥∥e(Wout

1 )− e(Wout
2 )

∥∥ ≤ L2
∥∥Wout

1 −Wout
2

∥∥ ,
∀Wout

1 ,Wout
2 .

By Assumption 3, it can be obtained∥∥e(Wout
1 )− e(Wout

2 )− J(Wout
1 )(Wout

1 −Wout
2 )

∥∥
≤ L1

∥∥Wout
1 −Wout

2

∥∥, ∀Wout
1 , Wout

2 .

Assumption 4:
∥∥e(Wout )

∥∥ provides a local error bound on
N (Wout

∗ , b1) for (17), i.e., there exist two constants c1 > 0
and b1 < 1 such that∥∥e(Wout )

∥∥ ≥ c1dist(Wout , �), ∀Wout
∈ �,

where dist(Wout , �) = min
Ŵout∈�

∥∥∥Wout
− Ŵout

∥∥∥,
N (Wout

∗ , b1) =
{
Wout

∣∣ ∥∥Wout
−Wout

∗

∥∥ ≤ b1} ,Wout
∗ ∈ �.

Lemma 5 [28]: Let dk be computed by Algorithm 2. Then
the predicted reduction satisfies

Predk ≥
∥∥∥JTk ek∥∥∥min

{
‖dk‖ ,

∥∥∥JTk ek∥∥∥/∥∥∥JTk Jk∥∥∥}.
To show the global convergence of Algorithm 2, the

following theorem is given.
Theorem 6: The sequence

{
Wout (k)

}
generated by

Algorithm 2 satisfies lim
k→∞

∥∥JTk ek∥∥ = 0.

Proof: If the theorem is not true, then there exists a
constant τ > 0 and infinitely many k such that ‖Jkek‖ ≥ τ .
Let

K =
{
k
∣∣∣∥∥∥JTk ek∥∥∥ ≥ τ } ,

T =
{
k
∣∣Wout (k + 1) 6=Wout (k), k ∈ K

}
.

Using Lemma 5, it can be got that

‖e1‖2 ≥
∑
k∈K

(‖ek‖2 − ‖ek+1‖2) =
∑
k∈T

(‖ek‖2 − ‖ek+1‖2)

≥

∑
k∈T

p0Predk ≥
∑
k∈T

p0
∥∥∥JTk ek∥∥∥

×min{‖dk‖ ,
∥∥∥JTk ek∥∥∥/∥∥∥JTk Jk∥∥∥}.

Using Algorithm 2, it can be obtained that ‖dk‖ =∥∥(JTk Jk + µkI)−1∥∥ ∥∥JTk ek∥∥ ≤
∥∥JTk ek∥∥/∥∥JTk Jk∥∥. Hence

min{‖dk‖ ,
∥∥JTk ek∥∥/∥∥JTk Jk∥∥} = ‖dk‖, which implies that∑

k∈T
‖dk‖ < +∞.

Since there are infinitely many k satisfying ‖Jkek‖ ≥ τ ,
there exists k̂ , such that ‖Jkek‖ ≥ τ and

∑
k≥k̂

‖dk‖ < +∞ for

all k ≥ k̂ . This result implies that lim
k→∞

Wout (k) exists, which

shows that αk →+∞.
Additionally, it follows from ‖Jkek‖ ≥ τ ,

∑
k≥k̂

‖dk‖ < +∞

for all k ≥ k̂ and Lemma 5 that

rk =
Aredk
Predk

= 1+
‖ek + Jkdk‖O(‖dk‖2)+ O(‖dk‖4)

Predk

≤ 1+
‖ek + Jkdk‖O(‖dk‖2)+ O(‖dk‖4)∥∥JTk ek∥∥min

{
‖dk‖ ,

∥∥JTk ek∥∥/∥∥JTk Jk∥∥}
≤ 1+

O(‖dk‖2)
‖dk‖

→ 1.

Based on Algorithm 2, there is a constant M > 0 satisfying
αk < M for all large k, which is contradictory. �
Before discussing the local convergence, the following two

lemmas are introduced. Suppose
{
Wout (k)

}
is sufficiently

close to �, i.e., dist(Wout (k), �) � 1. Let W̄out (k) ∈ �

satisfy
∥∥Wout (k)− W̄out (k)

∥∥ = dist(Wout , �).
Lemma 7 [27]: If Wout (k) ∈ N (Wout

∗ , b1), then there is a
constant c2 > 0 satisfying

c2dist(Wout , �)δ ≤ µk

= αk

∥∥∥JTk ek∥∥∥δ ≤ L3 ∥∥W̄out (k)−Wout (k)
∥∥δ .

Lemma 8 [27]: ‖dk‖ ≤ O(
∥∥W̄out (k)−Wout (k)

∥∥).
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Using the SVD of the Jacobi matrix, the quadratic conver-
gence of Algorithm 2 is studied. Suppose that the SVD of
J(Wout

∗ ) is

J(Wout
∗ ) = U∗6∗V∗T = (U∗1,U

∗

2)
(
6∗1

O

)(
V∗T1
V∗T2

)
= U∗16

∗

1V
∗T
1 .

where 6∗1 = diag(σ ∗1 , · · · , σ
∗
r ), σ

∗

1 ≥ σ ∗2 ≥ . . . ≥

σ ∗r > 0, rank(6∗1) = r .
Suppose that the SVD of J(Wout (k)) , Jk is as follows.

Jk = Uk6kVT
k

= (Uk,1,Uk,2,Uk,3)

6k,1
6k,2

O

VT
k,1

VT
k,2

VT
k,3


= Uk,16k,1VT

k,1 + Uk,26k,2VT
k,2,

where 6k,1 = diag(σ (k)
1 , . . . , σ

(k)
r ), 6k,2 = diag(σ (k)

r+1, . . . ,

σ
(k)
r+q), σ

(k)
1 ≥ . . . ≥ σ

(k)
r ≥ σ

(k)
r+1 ≥ . . . ≥ σ

(k)
r+q > 0, q ≥ 0.

For convenience, denote 6k,i,Uk,i and Vk,i as 6i,Ui and
Vi(i = 1, 2, 3), respectively. Consequently, the SVD of Jk
can be written as Jk = U161VT

1 + U262VT
2 .

Lemma 9 [29]:
(a)
∥∥U1UT

1 ek
∥∥ ≤ O(∥∥Wout (k)− W̄out (k)

∥∥);
(b)

∥∥U2UT
2 ek

∥∥ ≤ O(∥∥Wout (k)−Wout
∗ (k)

∥∥);
(c)
∥∥U3UT

3 ek
∥∥ ≤ O(∥∥Wout (k)− W̄out (k)

∥∥2).
The local convergence of Algorithm 2 is given as follows.
Theorem 10: The sequence

{
Wout (k)

}
created by

Algorithm 2 quadratically converges to the solution of (18).
Proof: First, it will be proven that rk → 1(k →∞).

We consider the following two aspects:
1) If

∥∥W̄out (k)−Wout (k)
∥∥ ≤ dk , from Lemma 8, it can be

got that∥∥W̄out (k)−Wout (k)
∥∥ = O(‖dk‖),

‖ek‖ − ‖ek + Jkdk‖
≥ ‖ek‖ −

∥∥ek + Jk (W̄out (k)−Wout (k))
∥∥

≥ c1
∥∥W̄out (k)−Wout (k)

∥∥− L1 ∥∥W̄out (k)−Wout (k)
∥∥

≥ ĉ1(
∥∥W̄out (k)−Wout (k)

∥∥) = O(‖dk‖).

2) If
∥∥W̄out (k)−Wout (k)

∥∥ > dk ,

‖ek‖ − ‖ek + Jkdk‖
≥ ‖ek‖

−

∥∥∥∥∥ek+ ‖dk‖∥∥W̄out (k)−Wout (k)
∥∥Jk (W̄out (k)−Wout (k))

∥∥∥∥∥
≥

‖dk‖∥∥W̄out (k)−Wout (k)
∥∥

× (‖ek‖ −
∥∥ek + Jk (W̄out (k)−Wout (k))

∥∥)
≥

‖dk‖∥∥W̄out (k)−Wout (k)
∥∥ (c1 ∥∥W̄out (k)−Wout (k)

∥∥
+O(

∥∥W̄out (k)−Wout (k)
∥∥2))

≥ c̄1 ‖dk‖ ,

Predk
= (‖ek‖ + ‖ek + Jkdk‖)(‖ek‖ − ‖ek + Jkdk‖)

≥ ‖ek‖ (‖ek‖ − ‖ek + Jkdk‖) ≥ ‖ek‖O(‖dk‖),

rk =
Aredk
Predk

= 1+
‖ek + Jkdk‖O(‖dk‖2)+ O(‖dk‖4)

Predk

≤ 1+
‖ek + Jkdk‖O(‖dk‖2)+ O(‖dk‖4)∥∥JTk ek∥∥min

{
‖dk‖ ,

∥∥JTk ek∥∥/∥∥JTk Jk∥∥}
≤ 1+

O(‖dk‖2)
‖dk‖

→ 1.

There is a constantM > m satisfying αk < M for all large k .
Second, the quadratic convergence will be proven. Using

the SVD of Jk , the following holds,

(JTk Jk + µkI)
−1

= V1(62
1 + µkI)

−1VT
1 + V2(62

2 + µkI)
−1VT

2 .

dk
= −(JTk Jk + µkI)

−1JTk ek
= −V1(62

1 + µkI)
−161UT

1 ek − V2(62
2 + µkI)

−162UT
2 ek .

ek + Jkdk
= (U1UT

1 + U2UT
2 + U3UT

3 )ek + Jkdk
= (U1UT

1 + U2UT
2 + U3UT

3 )ek
−U161(62

1 + µkI)
−161UT

1 ek
−U262(62

2 + µkI)
−162UT

2 ek
= (U1UT

1 − U161(62
1 + µkI)

−161UT
1 )ek

+ (U2UT
2 − U262(62

2 + µkI)
−162UT

2 )ek + U3UT
3 ek

= U1(I−61(62
1 + µkI)

−161)UT
1 ek

+U2(I−62(62
2 + µkI)

−162)UT
2 ek + U3UT

3 ek
= µkU1(62

1 + µkI)
−1UT

1 ek + µkU2(62
2 + µkI)

−1UT
2 ek

+U3UT
3 ek .

Since
{
Wout (k)

}
converges to Wout

∗ , assume that
L1
∥∥Wout (k)−Wout

∗

∥∥ ≤ σ ∗r
2 .∥∥∥(62

1 + µkI)
−1
∥∥∥

≤

∥∥∥6−21

∥∥∥ ≤ 1

(σ ∗r − L1
∥∥Wout (k)−Wout

∗

∥∥) < 4
σ ∗2r

,∥∥∥(62
2 + µkI)

−1
∥∥∥ ≤ µ−1k .

‖ek + Jkdk‖

≤ O(
∥∥Wout (k)− W̄out (k)

∥∥1+δ)
+O(

∥∥Wout (k)−Wout
∗

∥∥2)
≤ O(

∥∥Wout (k)−Wout
∗

∥∥2),
c1dist(Wout (k + 1), �)

≤ ‖ek+1‖ = ‖ek+1 + ek + Jkdk − ek − Jkdk‖

≤ ‖ek + Jkdk‖ + ‖ek+1 − ek − Jkdk‖

≤ ‖ek + Jkdk‖ + O(‖dk‖2)

≤ O(
∥∥Wout (k)−Wout

∗

∥∥2) ≤ O(∥∥Wout (k)− W̄out (k)
∥∥).
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It follows from
∥∥Wout (k)− W̄out (k)

∥∥ ≤ ‖dk‖ +∥∥Wout (k + 1)− W̄out (k + 1)
∥∥ that ∥∥Wout (k)− W̄out (k)

∥∥ ≤
2 ‖dk‖ holds for all sufficiently large k .
‖dk+1‖ = O(‖dk‖2), which implies that

{
Wout (k)

}
con-

verges quadratically toWout
∗ , namely∥∥Wout (k + 1)−Wout

∗

∥∥ = O(
∥∥Wout (k)−Wout

∗

∥∥2).
This completes the proof. �

IV. STABILITY ANALYSIS
The core of the ESN is that the echo state property (ESP)
should be possessed for the reservoir. In other words,
the internal states should uniquely depend on the external
input. Generally, the ESP is related to the reservoir weight
matrix and the input samples. To illustrate the ESP, con-
sider the local dynamics of the system by linearizing the
ALM-ESN. The nonlinear system (1) can be approximated
as follows.

x(n) = g′ Wx(n− 1)+ g′Winu(n) , Ax(n− 1)+ Bu(n)

(23)

where g′ = tanh′ is the derivative of tanh,
∥∥g′∥∥ ≤ 1, and

A = g′ W,B = g′ Win.
The existence of the ESP may be verified in terms of

the necessary condition and sufficient condition of the reser-
voir matrix [8]. The sufficient condition is that the maximal
singular value of W is less than 1 (σ (W) < 1). Since
‖W‖ = σ (W), the sufficient condition is equivalent to
c , ‖W‖ < 1.
Suppose that x(n) and x′(n) are different internal state

vectors.∥∥x(n)− x′(n)
∥∥

=
∥∥Ax(n− 1)+ Bu(n)− Ax′(n− 1)− Bu(n)

∥∥
=
∥∥Ax(n− 1)− Ax′(n− 1)

∥∥
≤ ‖A‖

∥∥x(n− 1)− x′(n− 1)
∥∥

=
∥∥g′ W∥∥ · ∥∥x(n− 1)− x′(n− 1)

∥∥
≤
∥∥g′∥∥ · ‖W‖ · ∥∥x(n− 1)− x′(n− 1)

∥∥
≤ c

∥∥x(n− 1)− x′(n− 1)
∥∥

≤ c2
∥∥x(n− 2)− x′(n− 2)

∥∥
≤ · · · ≤ cn

∥∥x(0)− x′(0)
∥∥ .

This shows that the reservoir state depends on the external
input and the effect of the initial state. The current reservoir
state is determined by its past external input history, which
guarantees the ESP.

V. SIMULATIONS AND RESULTS
In this section, the performance of the ALM-ESN is evaluated
on the following chaotic time series: 1) the Lorenz chaotic
time series prediction, 2) the Mackey-Glass chaotic time
series prediction (MGS) and 3) the Sunspot series prediction.
The normalized root mean square error (NRMSE) is used

as the evaluation criteria of model performance [30]–[32],
which is defined as follows:

NRMSE =

√√√√ S∑
t=1

(zi(t)− yi(t))2

Sσ 2 , (24)

where zi(t) denotes the desired output, yi(t) is the network
prediction output, σ 2 is the variance of the desired outputs,
and S is the total number of zi(t).

To show the effectiveness of the ALM-ESN, the simula-
tions are compared with the following models: OESN [8],
SCR [33], DESN [34], RR-ESN [18] and Lasso-ESN [20].
The reservoir size, spectral radius, and sparsity are all
obtained by the grid search method. All simulations are tested
in MATLAB 2013b environment and run on i7-4790 with
3.60GHz CPU and 8.0GB RAM.

A. LORENZ CHAOTIC TIME SERIES PREDICTION
The Lorenz system can be described as follows [4]:

ẋ = a1(y− x),
ẏ = −xz+ a2x − y,
ż = xy− a3z.

(25)

The typical system parameters can be chosen as a1 = 10,
a2 = 28, a3 = 8/3. In this case, the system is chaotic.
The fourth-order Runge-Kutta method is used to generate

the data set. The initial values are selected as x(0)=1, y(0)=1,
z(0)=0, and the step size is 0.01. To obtain the dynamic
characteristic and predict y(k + 1), the embedded data vector
α(k) = [y(k), y(k − 8), y(k − 2 × 8), . . . , y(k − 6 × 8)]T is
selected as in [4]. For the sample sequence pairs {α(k), y(k)},
the first 3000 values are used for training, the discarded values
in training set are 1000, and the next 2000 values are used for
testing.

After 100 independent simulations, the simulation results
based on the ALM-ESN with different damping terms for
the Lorenz chaotic time series are listed in TABLE 1. From
TABLE 1, according to the training time and the testing
NRMSE values, it can be found that it has better results
when the damping term is chosen as µk = αk

∥∥JTk ek∥∥δ ,
δ ∈ [1, 2]. The testing outputs and errors comparing
with different models for the Lorenz system are presented
in Fig.4 and Fig.5, respectively. It can be obtained that the
ALM-ESN has better accuracy and that the testing errors
are limited in [−4×10−5, 4×10−5]. Based on the 100 inde-
pendent simulations, the comparisons of the training time,
the mean and variance of the testing NRMSE value with
different approaches for the Lorenz system are described
in TABLE 2. Obviously, the ALM-ESN has better perfor-
mance than the other models according to the testing NRMSE
values.

B. MACKEY-GLASS CHAOTIC TIME SERIES PREDICTION
The Mackey-Glass system (MGS) has been used as a stan-
dard benchmark model because of its chaotic characteristics,
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TABLE 1. Simulation results based on ALM-ESN with different damping term for the Lorenz chaotic time series.

FIGURE 4. Testing outputs based on ALM-ESN and OESN for the Lorenz chaotic time series.

FIGURE 5. Testing error based on ALM-ESN and OESN for the Lorenz chaotic time series.

TABLE 2. Comparison of different models for the Lorenz chaotic time series.

on which the ESN has been successfully applied and shows
good performance [8]. The MGS is derived from the follow-
ing time-delay differential system [9]

dx(t)
dt
=

ax(t − τ )
1+ xn(t − τ )

+ bx(t). (26)

The MGS has a chaotic attractor when τ > 16.8. The param-
eter values are selected as n = 10, a = 0.2, b = −0.1, τ = 17

and the initial condition is x(0)=1.2 as in [9]. By the fourth-
order Runge-Kutta method, 6000 samples are obtained. The
number of the training samples is 3000, the first 1000 samples
in training set are discarded to washout initial transient, and
the number of testing samples is 2000.

The embedded data vector α(k) = [x(k), x(k−6), x(k−2×
6), . . . , x(k−3×6)]T is composed of four values of the time
series as done in [9]. The target output is the 84-step ahead
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FIGURE 6. Testing outputs based on the ALM-ESN and OESN for the MGS.

FIGURE 7. Testing error based on the ALM-ESN and OESN for the MGS.

TABLE 3. Comparison of different models for the MGS.

value of the time series. The network prediction performance
is evaluated by the normalized root mean square error at
the 84th time step (NRMSE84) [9].

NRMSE84 =

√√√√ Nr∑
t=1

(zi(84)− yi(84))2

Nrσ 2 . (27)

where zi(84) denotes the 84-step target value, yi(84) is the
corresponding network prediction value, σ 2 is the variance
of the desired outputs and Nr is the number of independent
simulations.

To validate the performance of the ALM-ESN, different
methods are implemented. The testing outputs and error for
the MGS are given in Fig.6 and Fig.7, respectively. It is
known that the ALM-ESN fits very well and the testing errors
are limited in [−6×10−4, 6×10−4]. Based on the 100 inde-
pendent simulations of the MGS, the comparison of training
time and testing NRMSE84 and their relative parameters are
listed in TABLE 3. Obviously, compared with other meth-
ods, the developed ALM-ESN has slightly better prediction

performance than the other models according to the value of
testing NRMSE84.

C. SUNSPOT SERIES PREDICTION
The sunspot is one of the most basic and obvious solar activ-
ities on the Sun’s photosphere, which can affect the earth’s
magnetic field. Therefore, it is significant to model and study
sunspots [30]. The sunspot data are the monthly mean Wolf
sunspot numbers in this simulation [35]. 3174 sets of data
were collected from January 1749 to June 2013. The first
2200 values are used for training, the 200 discarded points
are included in the training set, and the next 1174 values are
used for testing. In this simulation, the embedded data vector
is chosen as α(k) = [y(k), y(k−10), y(k−2×10), . . . , y(k−
3× 10)]T to predict the next value y(k + 1) as in [33], where
y(k) is the number of sunspots at time k .
The testing outputs and error for the sunspots are presented

in Fig.8 and Fig.9, respectively. It can be obtained that the
ALM-ESN has slightly better performance than the OESN.
The detailed results are summarized in TABLE 4 based on
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FIGURE 8. Testing outputs based on the ALM-ESN and the OESN for sunspots.

FIGURE 9. Testing error based on the ALM-ESN and the OESN for sunspots.

TABLE 4. Comparison of different models for sunspots.

FIGURE 10. Training NRMSE curve for sunspots.

100 independent simulations. Based on the comparison of
training time, the mean and variance of testing NRMSE in
TABLE 4, the ALM-ESN has relatively higher prediction
accuracy than the other models. The training NRMSE curve
is shown in Fig.10, and the number of iterations is only 4.

FIGURE 11. Successful design ratio based on the ALM-ESN and the OESN
for sunspots.

To test the robustness of the ALM-ESN, the successful
design ratio is introduced by

R(θ ) =

G∑
i=1

h(ai − θ )

G
, (28)
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FIGURE 12. Testing outputs based on the ALM-ESN and the OESN for BOD.

FIGURE 13. Testing error based on the ALM-ESN and the OESN for BOD.

TABLE 5. Comparison of different models for BOD.

h(x) =

{
1 x ≤ 0
0 x > 0

(29)

whereG is the number of experiments, and ai is the prediction
NRMSE for the ith experiment [34]. R(θ ) is a probability
estimation of obtaining a network whose prediction NRMSE
is less than or equal to the threshold θ . For R(θ ), the higher,
the better.

After 100 independent experiments, the successful design
ratios are presented in Fig.11. It is known that the ALM-ESN
possesses higher successful design ratios than the OESN.

D. BIOCHEMICAL OXYGEN DEMAND PREDICTION
IN THE WASTEWATER TREATMENT PROCESS
Wastewater treatment process (WWTP) is a complex system
including a variety of physical and biochemical reactions.
Due to the nonlinear characteristics, delay-time and uncer-
tainty, it is difficult to measure effluent qualities param-
eters in the WWTP. Biochemical oxygen demand (BOD)
is one of the most important effluent quality indexes and
can reflect the water pollution situation. However, the

conventional chemical measurement approaches cannot have
a real time monitoring process. Therefore, water quality pre-
diction model for BOD is essential to support water quality
parameters. According to [36] and [37], Chemical Oxygen
Demand (COD), suspended solids (SS), pH and dissolved
oxygen (DO) are selected as the input variables. After delet-
ing the abnormal data, 343 samples were got from a sewage
treatment plant in Beijing, China. The first 200 values are
used for training, and the next values are used for testing. The
discarding points in training set are 50.

The testing results for effluent BOD are shown in
Fig.12 and Fig.13, respectively, which illustrate that
ALM-ESN has more accurate prediction than OESN for
actual time-series. Based on 100 independent simulations,
the detailed results are listed in Table 5. From the comparison
of training time, mean values and variance of testing NRMSE
in Table 5, ALM-ESN needs much training time, ALM-
ESN still has high accuracy than OESN, SCR, DESN and
RR-ESN, but has low accuracy than Lasso-ESN and
BPSO-ESN.

10730 VOLUME 6, 2018



J. Qiao et al.: ALM Algorithm Based ESN for Chaotic Time Series Prediction

VI. CONCLUSION
The ill-posed problem may occur in the learning process
of the ESN. To solve this problem, an adaptive Levenberg-
Marquardt algorithm based echo state network is developed.
In the readout training process, the LM algorithm is used
to replace the linear regression method for output weights,
the damping term is selected adaptively, and the adaptive
factor is amended by the trust region technique. Furthermore,
to make the inputs fall within the active region of activation
function, weight initialization is conducted to obtain the opti-
mal region of initial weights using the Cauchy inequality. The
simulation results for the three chaotic time-series predictions
demonstrate that the ALM-ESN exhibits better prediction
performance than some existing ESN construction methods.
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