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ABSTRACT Echo state networks (ESNs) have wide applications in chaotic time series prediction. In the
ESN, if the smallest singular value of the reservoir state matrix is infinitesimal, the ill-posed problem
might occur during the training process. To overcome this problem, an adaptive Levenberg—Marquardt (LM)
algorithm-based echo state network (ALM-ESN) is developed. In the developed ALM-ESN, a new adaptive
damping term is introduced into the LM algorithm. The adaptive factor is amended by the trust region
technique, furthermore, convergence analysis, and stability analysis are performed. Moreover, to make the
inputs fall within the active region of the activation function and improve the learning speed, a weight
initialization method using linear algebra is deployed to determine the appropriate input weights and reservoir
weights. Simulations demonstrate that the ALM-ESN can overcome the ill-posed problem. Furthermore,
it exhibits better performance and robustness for chaotic time series prediction than some other existing

methods.

INDEX TERMS Echo state network, adaptive Levenberg-Marquardt algorithm, trust region technique,

weight initialization, chaotic time series prediction.

I. INTRODUCTION

Chaos is a universal phenomenon in nature and human
society. Chaos theory can give an appropriate means to
demonstrate the properties of dynamic systems [1]. There-
fore, research on chaotic time series prediction is very signif-
icant [2]-[4]. Many studies have been performed on chaotic
time series prediction using neural networks (NNs), such
as the fuzzy neural network (FNN) [5], the support vector
machine (SVM) [6], the recurrent neural network (RNN) [7]
and the echo state network (ESN) [8]. These methods can the-
oretically approximate dynamic systems with any arbitrary
accuracy. Among these models, the ESN has been paid a
growing amount of attention. In the ESN, only the weights
from the reservoir to the output layer need to be tuned by
the least squares method, while the input weights and reser-
voir weights remain unchanged once generated. Unlike the
RNN, the ESN can overcome the local minima and gradient
vanishing problems [8], and thus it exhibits better perfor-
mance than other traditional neural networks. Based on

these advantages, the ESN has numerous successful appli-
cations such as Sunspot prediction [9], human motion
modelling [10], wireless service [11], online learning con-
trol [12] and electric load forecasting [13].

Although the ESN has many advantages, some problems
still need to be solved. For example, the ill-posed prob-
lem might occur during the learning process, which would
weaken the generalization ability of the ESN. There are some
reasons for this limitation provided below. First, since the
input weights and reservoir weights are randomly generated,
this random weight initialization can make the inputs fall
within the saturation region of the activation function and
result in the ill-posed problem. Second, the pseudoinverse
serves as the common training method for the ESN [8]. When
the smallest singular value of the reservoir state matrix is
infinitesimal, the ill-posed problem might happen. To address
this problem, the weight initialization method for determining
the optimal region of initial weight values and the readout
training method for the ESN are considered in this paper.
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Generally, the input weights and reservoir weights are
important for the learning speed and performance of the
ESN [14]. Since the activation function of the reservoir
is hyperbolic tangent in the ESN, according to the sen-
sitive area distribution of the hyperbolic tangent function,
small weights can make the sensitive area have a certain
width. If the input weights and reservoir weights are small,
many reservoir neurons will fall within the active region
of the activation function. Otherwise, if the scaling is very
large, they will stay in the saturation region, resulting in the
ill-posed problem. Therefore, it is necessary to determine the
appropriate input weights and reservoir weights to carry out
weight initialization. Several methods have been developed.
Using the independent component analysis, the optimal hid-
den layer’s initial weights are given for the multilayer per-
ceptron and the salient feature components are obtained from
the input data [15]. Using the mutual information method,
weights are initialized for the FFNN [16]. It is noted that
the above-mentioned weight initialization method may have
a high computational burden. Thus the developed method
based on the Cauchy inequality is given. This developed
algorithm is computationally efficient and can ensure the
output lies in the active region of the activation function.

To compute the proper output weights in the ESN, some
methods have been developed, such as the pseudoinverse
solution [8] and the singular value decomposition (SVD) [9].
In these methods, if the smallest singular value of the reser-
voir state matrix tends to become zero, the state matrix
does not have full column rank, resulting in the ill-posed
problem. Then, to address this issue, some regularization
methods, such as the /, penalty (ridge regression [17], also
called Tikhonov regularization) (RR-ESN) [18], [19] and the
1 penalty (Lasso-ESN) [20], have been applied to improve
the generalization ability. However, the RR-ESN has dif-
ficulties in directly obtaining the optimal ridge parameter.
Since it is non-convex, some suboptimal solutions will
be obtained. To effectively optimize the output layer con-
nection and eliminate unnecessary output layer connec-
tion, some evolutionary algorithms, such as the genetic
algorithm (GA) [21] and binary particle swarm optimiza-
tion (BPSO) [22], are employed. However, evolutionary algo-
rithms suffer from high computational complexity and tend
to experience premature convergence. According to [23],
it is known that the generalization ability degrades due to
large output weights. Therefore, it is necessary to solve
the large output weights to avoid the occurrence of the
ill-posed problem. On the other hand, the LM algorithm
is one of the most successful algorithm in increasing the
convergence speed and avoiding the occurrence of ill-posed
problem [24], [25]. Using the LM algorithm, some satisfac-
tory results have been obtained and good convergence can be
ensured. In this paper, the output weights are computed by the
LM algorithm to replace the linear regression. Furthermore,
a new damping term is adaptively given (called ALM-ESN),
where the adaptive factor is amended by the trust region
technique.
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The rest of this paper is organized as follows. A short
review of the classical ESN and an improved ESN based on
the LM algorithm is given in Section II. The convergence
analysis and stability analysis of the ALM-ESN are shown
in Section III and Section IV, respectively. Some experiments
are conducted to illustrate the performance of the developed
ALM-ESN compared to other existing models in Section V.
Some conclusions are presented in Section VI.
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FIGURE 1. The basic architecture of the OESN. The dashed connections
are calculated by linear regression.

Il. THE DEVELOPED ESN

A. THE ORIGINAL ESN

The original ESN (OESN) [8] has an input layer, reservoir
layer and readout layer, as shown in Fig.1 (without feedback
connections). The corresponding recursive formula of the
OESN is given as follows:

x(n) = g(Wx(n — 1) + Wua(n)), 4))
y(n) = W (x(n), u(n)). 2)

where u(n) € RX denotes the external input, x(n) € RV
represents the reservoir state, y(n) € RI is the network
prediction output and z() € R is the corresponding desired
output. g is the activation function of the reservoir, which is
chosen as the hyperbolic tangent function. The input weight
matrix W e RV*K and the reservoir weight matrix W e
RN >N are randomly generated, and the output weight matrix
Woul e REX(KHN) peeds to be calculated using the sim-
ple linear regression. The internal state can be provided as
X = [X(1), X(2),...,X(P)]" (P is the size of training sam-
ples), where X(n) = x()!, u(n)’1*. The desired output is
Z = [z(1),z(2), ...,z(P)]’. Fora given training samples set
{ (u(n), z(n))lu(n) € RX, z(n) e RE }, the output weights can
be calculated as

WOMI — (X+Z)T — ((XTX)_IXTZ)T (3)

where X is the Moore-Penrose generalized inverse of the
internal state matrix X.

Using the SVD [9], the reservoir state matrix can be
decomposed as X = AABT, where A and B are both
orthogonal matrices, A = diag(A1, X2, ..., 0), A1 = Ay >
... = Ag > 0 are the nonzero singular values of X. Then
X+t = BA7'AT, and the corresponding output weights can
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be rewritten as
2
W = (X*2)" = BAT'ATZ) = 3 bal) 2()
=1 "

“

where a(i) and b(i) are the i-th column of A and B, respec-
tively. From formula (4), it is known that if the smallest
singular value of X is close to zero, the output weights are
very large, which is ill-posed. As a result, the ESN has bad
stability and poor generalization ability.

B. WEIGHT INITIALIZATION

The initial weights have been regarded as one of the most
important factors to improve the learning speed and perfor-
mance of neural networks. In the traditional ESN, the input
weight and reservoir weight obey the uniform distribution
in the interval [—1, 1] [8]. To test the performance of the
network with different weight intervals, the Mackey-Glass
system % = l_‘f;(,f—(:i) + bx(t) is selected [9]. Fig.2 shows
the training ability and generalization ability with differ-
ent weight interval. Suppose the input weight and reservoir
weight obey the uniform distribution in the interval [— 8, B].
As shown in Fig.2, when f increases, the mean testing error
fluctuates. The mean testing error is at its minimum when
B equals 0.3, while the mean training error has a relatively
steady change. It means that the weight interval is very impor-
tant for network performance. Therefore, it is necessary to
perform weight initialization to determine the optimal weight
interval.

__________

Error

FIGURE 2. Training and testing error for the Mackey-Glass system.

Fig.3 shows the curve of hyperbolic tangent function.
To ensure that the outputs fall within the active region,
the weight should be initialized, resulting in a smaller testing
error. The magnitudes of the initial weights are evaluated by
the following problem

N K
-5 < Zwijxj,pfl + Zwi‘zukp <s@=1,---,N), (5
j=1 k=1

where wiZ is the (i, k)-th element of Wi, wij is the (i, j)-th
element of W, uy,(p = 1, - -+, P) is the k-th element of and
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FIGURE 3. Hyperbolic tangent function.

Xjp—1(p = 1,---, P)is the j-th element of x(p — 1) (p =
l,---,P).

In this paper, the active region is assumed to fall within
the region, where the derivative of the reservoir activa-
tion function is more than 2% of the maximum derivative,
ie., s & 2.65. To determine the optimal weight interval,
the following theorem is given.

Theorem 1: The input weights and reservoir weights are
supposed to obey the independent uniform distribution with
zero mean. If

K N K N
D’ +> P Do i D )| <5
k=1 j=1 k=1 j=1
the input and reservoir weight interval fall within [—8, 8],
where 8 = p=l,i~I~1,P Bp.
- 3
=< .
Pp = K N
(K+N)| 2 (up)* + 3 (x,p-1)?
k=1 j=1

Proof: From inequality (5), it can be got that
2

N K

in 2
D WiGip-t ) Wi | <5,
Jj=1 k=1

Using the Cauchy inequality,

N K 2
Do Wik + Y Wi
j=1 k=1
K N K N
< D@+ @ | [ Do i+ wp)?
k=1 j=1 k=1 j=1
< 6)

For the p-th samples, if the input weight and reservoir
weight obey the independent uniform distribution with zero
mean in the interval [—8,, B,], from the law of large numbers,
it can be obtained that

2

Sy Lo  KP
DO A B (i) = K -var(wif) = 2. ()
k=1 k=1
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Similarly,
N 2
Np
> vy~ = ®)
; 3
j=1
Then
3
<5 9
,Bp =S K N ) ( )
K +N) [ X g + Y (,p-1)
k=1 j=1
Let
— mi . 10
B ,in By (10)
C. ALM-ESN

The LM algorithm can combine the advantages of the steepest
descent method and Gauss-Newton method [25]. It not only
possesses the speed advantage of Gauss-Newton method but
also has the stability of the steepest descent method. Using
the approximate second-order derivative, the LM algorithm
converges much faster than the first-order gradient method.

The calculation of the output weights W based on the
LM algorithm is equivalent to minimizing the objective func-
tion E(W?“"), which can be defined as follows:

I 12
E(Wout) — EZZ();f _d]{”)Z — 52}65, (11
g=

p=1/=1

where e; = y]q - djq, y]’? is the desired output, and djq is the
network output.

During each iteration, the output weights W will be
replaced by the new one. The update rule based on the LM
algorithm can be written as follows:

WO (k 4+ 1) = WO (k) — T T + D' I e, (12)

where J; is a Jacobi matrix, ey is an error vector, and g is a
positive damping term.

e = e(W (k) = (e1, ez, , eg)”, (13)
dey deq deq
aw gws aw%“i N
den der dey
T2 JW Gy = [ Owi awst W
deg  deg  deg
aw gws Bw%“_{_ N
(14)

According to (12), since w is a positive damping term,
J,{Jk + il is nonsingular, which can avoid the ill-posed
problem. There are many choices for the damping term .
However, there is no general rule in the selecting method
of the damping term. In [26], the parameter is chosen as
Ui = |lex ||2, and it can be shown that the LM algorithm
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possesses quadratic convergence. However, the damping term
nir = |lex ||2 (if no other specified, the operator ||-|| refers to
standard /> norm in this paper) has some drawbacks. If the
sequence trends towards the solution set, puy = llex II% may
be less than the machine accuracy. Therefore, it may have
no effect. Moreover, pu;y = ||ek||2 may be very large when
the sequence deviates from the solution set, and the step dy
will approach zero. Consequently, the iteration speed has no
advantage. In [27], the parameter is chosen as u; = 6 |lex || +
(1 — 0) |J]ex| ® € [0,1]) and has a local error bound.
It has been shown that the sequence converges quadratically,
however, the global convergence is not considered.

Based on these observations, to obtain an appropriate iter-
ation step d; and increase the convergence speed, a new
damping term is chosen as py = o ||J,€ek H(S with § € [1, 2],
where oy is an adaptive factor. The trust region technique is
used to ensure the global convergence. The actual reduction
and predictive reduction of the objective function can be
defined as follows:

Aredy = lex* — (W (k) + d)| 2 (15)
Pred; = llex|® — llex + Jxdy*. (16)
The ratio r;, = ;}:ﬁg’; is important to adopt the trial step and

update the parameter «; between these reductions.
Based on the LM algorithm, each iteration may be
described as follows.

WO (k + 1) = W (k) + d(k),
de =~ T+ D T e, (17)
we=ou |e|’. 8 ell.2l.

The main steps of the ALM-ESN can be summarized as
follows.

Algorithm 2:

Step 1: Determine the input weight and reservoir weight
interval [— 8, B] using inequality (9) and equation (10).

Step 2: Randomly create a reservoir weight matrix W with
the given sparsity and reservoir size in the interval [—8, B].
Scale Wo to W = (aw/p(Wp))Wy, where 0 < aw < 1
and p(W)p) is the spectral radius of Wy. Initialize the internal
state x(0).

Step 3: Randomly produce an input weight matrix W™
according to a uniform distribution in the interval [—8, B],
initialize the output matrix W (0).

Step 4: Obtain the internal states by the external input as (1)
from the initial transient 7y;p.

Step 5: Compute the network output, the error vector ey,
the objective function E(W*") and the Jacobi matrix J.

Step 6: Givene >0, 01 >m > 0,0<py <p1 <pr <1,
if the norm of energy function’s gradient ||J ,{ek || < g, stop;
otherwise compute dy = —(J;Jk + ,ukI)’lJ,Zek, where
we = o |Ier|’ .8 € [1,2L,e = 106, ; = 107,
m =108, po = 0.0001, p; = 0.25, p» = 0.75.
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Step 7: Compute r; = Aredy /Predy, let

Wout(k+ 1) — Wou[(k)+dk7 l:frk >'p0a
W (k), otherwise.
Step 8: Compute
4oy, if rx <pi,

if re € [p1,p2l,
ok :
max{z,m}, if re > pa.

Qk+1 = § %

go to Step 5.
Step 9: Test the trained ALM-ESN.

Ill. CONVERGENCE ANALYSIS
Let
e(Wo"y = (. (18)

Suppose the solution of (18) is nonempty and denote by £2.
It is obvious that

di = AT Je + D' ey, (19)
is a solution of
mdine’%d) = Jed + exll* + e Id1>. (20)
Define
_ T —14qT
A= AL+ w0 e e

It can be determined that (12) is equivalent to the following
trust region problem:

min [Jed + e ||
st ld|l < Ag. (22)

Therefore, the LM algorithm is equivalent to the trust
region method. To study the convergence properties of the
algorithm, we suppose that the following two assumptions
and lemma are satisfied.

Assumption 3: ey is continuously differentiable. Both ey
and its Jacobi matrix J; are Lipschitz continuous, i.e., there
exist positive constants L; and Ly such that

@ [JOVP) —JWS| = Ly [Wg - W
VW?W , Wgut;

(0) * [e(Wi) — e(W3 |
YW W,

By Assumption 3, it can be obtained

||e(W(l)ul) _ e(w(éul) _ J(W(l)ul)(wll)ul _ Wtzlul)”
<L ||thmt _ Wgut , VW?M, ng.

3

IA

La Wi = W

bl

Assumption 4: || e(WU) || provides a local error bound on

N(W2 py) for (17), i.e., there exist two constants ¢; > 0

and b; < 1 such that

[e(W )| = c1dist( W™, Q), VW™ € Q,
where dist W™, @) = min_|[weur — Wou |,
Wout Q)

N(W”ut,b]) — {Wout| ||W0ut _qut” < bl} ’W:ut e Q.

*
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Lemma 5 [28]: Let d; be computed by Algorithm 2. Then
the predicted reduction satisfies

Predi = | I ex | min {l1dil.

Tiee|/[3ae] )
To show the global convergence of Algorithm 2, the
following theorem is given.
Theorem 6: The sequence {W?“(k)} generated by
Algorithm 2 satisfies lim |37 e | = o.
—>00
Proof: If the theorem is not true, then there exists a
constant T > 0 and infinitely many k such that ||Jxex| > 7.
Let
K = {kH‘J,{ekH = r},
T = {k|W*"k+1)#W"(k),keK}.
Using Lemma 5, it can be got that

2 2 2 2 2
ledl® = ) " (llexll* — llexri 1) =D (lexl” — llex4111%)

kek keT
> > " poPred; > Y po HJ/{ek H

keT keT

xmin{lde |, |3F e /973

Using Algorithm 2, it can be obtained that [[d¢| =
NI+ mD ™ [ Iex]| < |Iie|/[|IiTx|. Hence

min{||dg |, |IF e/ |IF Iic|} = g ||, which implies that
> lldi ]l < +o0.
keT

Since thege are infinitely many k satisfying ||Jxex| > 7,
there exists k, such that ||Jxex|l > v and " ||dx|| < 400 for
k>k
all k > k. This result implies that klim W (k) exists, which
—00
shows that oy — +00.
Additionally, it follows from || Jxer || > t, > [ld |l < 400
k>k
for all k > k and Lemma 5 that

o Aredi e £ Jidel OGdeI) + OCIdel )
k= Predy, o Predy,
llex + Jede |l OCldi [1*) + OCllde 1)
=147 : T T
| 9% x| min {dll, ||/ 3|}
OCldk I1*)
< —— > 1.
lldll
Based on Algorithm 2, there is a constant M > 0 satisfying
ar < M for all large k, which is contradictory. ]

Before discussing the local convergence, the following two
lemmas are introduced. Suppose {W?“(k)} is sufficiently
close to 2, i.e., dist(W (k), Q) < 1. Let W (k) € Q
satisfy |[Wo (k) — WO (k)| = dist(Wo, Q).

Lemma 7 [27]: If WO (k) € N(W2", b}), then there is a
constant ¢ > 0 satisfying

codist(W Q)% <
8 -
= o I ee]| = s [ Wik - W o
Lemma 8 [27]: k|l < O(| W (k) — W (k)|)).
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Using the SVD of the Jacobi matrix, the quadratic conver-
gence of Algorithm 2 is studied. Suppose that the SVD of
J(WoH) is

* *T
=Uizvil.
where X = diag(o), -
of > 0,rank(X}) =r.
Suppose that the SVD of J(W? (k)) £ J; is as follows.

Je = Uz Vi

* * *
’Gr )701 2 02

v
v

Xk VI;]
= (Uk,1, Ur 2, Uk 3) X2 Vio

T T
= U1 X1 Vi + Uk 2Zk 2V 5,

where X; 1 = diag(al(k), R crr(k)), Yo = diag(or(l_?l, R
o102 20 20® 2. 26® S 0/g20,

For convenience, denote Xy ;, Uy ; and Vi ; as X;, U; and
V(i = 1,2, 3), respectively. Consequently, the SVD of Ji
can be written as J; = U1)31V1T + UQZZV;

Lemma 9 [29]: B

(@ |U1UT | < O(| W (k) — W (k) |);

(b) [U2UT er | < O(| W (k) — W (k)|));

© | UsUFex || < O W (k) — W i) |,

The local convergence of Algorithm 2 is given as follows.

Theorem 10: The sequence { wout (k)} created by
Algorithm 2 quadratically converges to the solution of (18).

Proof: First, it will be proven that ry — 1(k — 00).

We consider the following two aspects:

1) If [ W (k) — W (k)| < di, from Lemma 8, it can be
got that

[We (k) — W (k)| = Odlldk ),
llexll — llex + Jedgl

> llexll = [lex + Je (W™ (k) = W™ (k) |
> ¢ ||W0ul(k) _ WOLll(k)” _ Ll kuut(k) _ Wout(k)”
> &1(|[W (k) — W (k) |) = OClldi D).

2) If | W (k) — W (k)| > d.,

llexll — llex + Jedgll
llell

v

lldy |l
”V_Voul(k)_wout(k)“
lldy |l
- ||V_Vout(k)_wout(k)”
x (lexll — [ex + Je (W (k) — W (k))|)
[l d ||
- “V'Vout(k) _ Wout(k)“
+ O WP (k) — W () [
> ¢ |ldell

ex+ T (W (k) — W (k)

(Cl ||WOLll(k) _ Woul(k)H
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Predy,

= (lexll + llex + JedrD(llexll — llex + Jedkl)
lexll Cllex |l — llex + Jxdill) = llexll OClldk ),
Aredi . llex + Jedi | Olde 1) + OCldi 1)
Predy, Predy,

llex + Jedi | OCld 1*) + OCllde|I*)

|9 ex | min {ldel, 7 e /] 3¢ Te ]}

-~ 1 Ol

lldll

There is a constant M > m satisfying oy < M for all large k.

Second, the quadratic convergence will be proven. Using
the SVD of Ji, the following holds,

v

T =

1+

AT T+ D!
= Vi(E} + D'V 4+ Vo(23 + i) VE
d;
= (I + D~ ] e
= —Vi(Z} + mD ' Z1U e — Va(Z5 + D) U5 e
er + Jidk
= (U1U] 4+ U,UF + U3UD )er + Jidy
= (U1U] + U,U] + U3U e
—UI i+ D72 U e
— UzZz(Z% + ,bLkI)il Zngek
= (UU] = Ui X1 + w7 Z10] ex
+(UaU] — UaZo(25 + D)™ ZoU der + UsUT e
=Ud—Z(Z] + D' Z)U e
+ U@ — Z5(25 + D' Z)UJ e + UsUS e
= wUi(Z] + D)0 e + 1Ua(23 + D)™ 07 e
—|—U3U3Tek.

Since {W”“’(k)} converges to W2, assume that

Ly [Weerthy — W | < .

|23+ |
1

(0F — L [Woi(t) — Wi )~ o2
|3+ ™| = i
llex + Jedill

< O(HWO'”(k) i V‘Vouz(k)”

+O(|W (o) — Wi [|*)

< O(| W oy = W |,
c1dist W (k + 1), Q)

< llext1ll = llexs1 + ex + Jrdx — ex — Jdi||

< llex + Jidill + llext1 — ex — Jedkll

< lle + Jdi |l + OCldi 1)

< O(| W () = W2 %) = O(| W™ (k) = W™ (k) ).

= [=7] =

146
)
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It follows from |Wo“(k)—Wo®&)| < el +
[Weu (k + 1) — WO (k + 1)|| that | W (k) — W (k)| <
2 ||dg || holds for all sufficiently large k.

ldi+1]l = O(lldg||*), which implies that {W°" (k)} con-
verges quadratically to W2*', namely

||W0th(k 4 1) _ Wiut || — O(”WO"{t(k) — W:ul ||2)

This completes the proof. 0

IV. STABILITY ANALYSIS

The core of the ESN is that the echo state property (ESP)
should be possessed for the reservoir. In other words,
the internal states should uniquely depend on the external
input. Generally, the ESP is related to the reservoir weight
matrix and the input samples. To illustrate the ESP, con-
sider the local dynamics of the system by linearizing the
ALM-ESN. The nonlinear system (1) can be approximated
as follows.

x(n) = g Wx(n — 1) + g W"u(n) £ Ax(n — 1) + Bu(n)
(23)

where g = tanh'’ is the derivative of tanh, |
A=g W,B=g W"

The existence of the ESP may be verified in terms of
the necessary condition and sufficient condition of the reser-
voir matrix [8]. The sufficient condition is that the maximal
singular value of W is less than 1 (c(W) < 1). Since
W] = o(W), the sufficient condition is equivalent to
c2 W < 1.

Suppose that x(n) and x'(n) are different internal state
vectors.

[x02) — X'
= |Ax(n — 1) + Bu(n) — AX'(n — 1) — Bu(n)||
= |Ax(n — 1) — AX'(n — 1)
< Al |x(2 — 1) =x'(n — 1|
= [l W] [xtr = ) =X = D)
I - Wl - [x(r = 1) = X'(n = D)
c|xtn—1)—x(n-1)|
A x(n—2) —x'(n—2)|
S <M x(0) =X (0)] -

g| <1, and

IATA

IATA

This shows that the reservoir state depends on the external
input and the effect of the initial state. The current reservoir
state is determined by its past external input history, which
guarantees the ESP.

V. SIMULATIONS AND RESULTS

In this section, the performance of the ALM-ESN is evaluated
on the following chaotic time series: 1) the Lorenz chaotic
time series prediction, 2) the Mackey-Glass chaotic time
series prediction (MGS) and 3) the Sunspot series prediction.
The normalized root mean square error (NRMSE) is used
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as the evaluation criteria of model performance [30]-[32],
which is defined as follows:

S (1) — vi($))2
NRMSE — Z(Zz(t)sa)ziz(t))

t=1

; (24)

where z;(¢) denotes the desired output, y;(¢) is the network
prediction output, o2 is the variance of the desired outputs,
and S is the total number of z;(¢).

To show the effectiveness of the ALM-ESN, the simula-
tions are compared with the following models: OESN [8],
SCR [33], DESN [34], RR-ESN [18] and Lasso-ESN [20].
The reservoir size, spectral radius, and sparsity are all
obtained by the grid search method. All simulations are tested
in MATLAB 2013b environment and run on i7-4790 with
3.60GHz CPU and 8.0GB RAM.

A. LORENZ CHAOTIC TIME SERIES PREDICTION
The Lorenz system can be described as follows [4]:

X =a(y —x),
y=—xz+axx —y, (25)
=Xy — asz.

The typical system parameters can be chosen as a; = 10,

ap = 28, a3 = 8/3. In this case, the system is chaotic.

The fourth-order Runge-Kutta method is used to generate
the data set. The initial values are selected as x(0)=1, y(0)=1,
z(0)=0, and the step size is 0.01. To obtain the dynamic
characteristic and predict y(k + 1), the embedded data vector
a(k) = [y(k), y(k — 8), y(k —2 x 8),...,y(k — 6 x 8)] is
selected as in [4]. For the sample sequence pairs {e(k), y(k)},
the first 3000 values are used for training, the discarded values
in training set are 1000, and the next 2000 values are used for
testing.

After 100 independent simulations, the simulation results
based on the ALM-ESN with different damping terms for
the Lorenz chaotic time series are listed in TABLE 1. From
TABLE 1, according to the training time and the testing
NRMSE values, it can be found that it has better results
when the damping term is chosen as puy = oy ||J,{ek|
8 € [1,2]. The testing outputs and errors comparing
with different models for the Lorenz system are presented
in Fig.4 and Fig.5, respectively. It can be obtained that the
ALM-ESN has better accuracy and that the testing errors
are limited in [-4x 107>, 4x1077]. Based on the 100 inde-
pendent simulations, the comparisons of the training time,
the mean and variance of the testing NRMSE value with
different approaches for the Lorenz system are described
in TABLE 2. Obviously, the ALM-ESN has better perfor-
mance than the other models according to the testing NRMSE
values.

B. MACKEY-GLASS CHAOTIC TIME SERIES PREDICTION
The Mackey-Glass system (MGS) has been used as a stan-
dard benchmark model because of its chaotic characteristics,
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TABLE 1. Simulation results based on ALM-ESN with different damping term for the Lorenz chaotic time series.

Damping term Training Testing NRMSE Reservoir Spectral Sparsity
time(s) Mean Variance size radius
5
a, ||J re, || 80.81 2.21x10° 3.21x10° 200 0.8000 0.0250
a, ||J Te, || 111.59 1.16x10° 1.76x10* 200 0.8000 0.0250
a e’ 113.73 1.89x10°  2.06x10™ 200 0.8000 0.0250
T T T T T T T
=== Desired Output —=— ALM-ESN ----- ESN

Output

L

FIGURE 4. Testing outputs based on ALM-ESN and OESN for the Lorenz chaotic time series.
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FIGURE 5. Testing error based on ALM-ESN and OESN for the Lorenz chaotic time series.

TABLE 2. Comparison of different models for the Lorenz chaotic time series.

Method Training Testing NRMSE Reservoir size Spectral Sparsity
time(s) Mean Variance radius

ALM-ESN 80.81 2.21x10° 3.21x10° 200 0.8000 0.0250
OESN'®! 79.42 9.19x10™ 9.21x10° 400 0.8500 0.0450
SCRF! 63.45 9.92x10™ 8.31x10° 400 0.9500 0.0025
DESNE 81.68 7.72x10* 7.45x10° 400 0.9000 0.0238
RR-ESN!'® 82.32 8.38x10™ 8.13x10° 400 0.9000 0.0300
Lasso-ESN™! - 5.19x10* 7.16x10° 400 0.8000 0.0300
BPSO-ESN# 93.56 5.23x10* 6.31x10° 400 0.8000 0.0300

on which the ESN has been successfully applied and shows

good performance [8]. The MGS is derived from the follow-

ing time-delay differential system [9]
dx(?) . ax(t — 1)

dr— 14x"t—1)

+ bx(1). (26)

The MGS has a chaotic attractor when 7 > 16.8. The param-
eter values are selectedasn = 10,a = 0.2,b = —0.1,7 = 17

VOLUME 6, 2018

and the initial condition is x(0)=1.2 as in [9]. By the fourth-
order Runge-Kutta method, 6000 samples are obtained. The
number of the training samples is 3000, the first 1000 samples
in training set are discarded to washout initial transient, and
the number of testing samples is 2000.

The embedded data vector ae(k) = [x(k), x(k—6), x(k—2x
6),...,x(k=3x6)]"is composed of four values of the time
series as done in [9]. The target output is the 84-step ahead
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FIGURE 6. Testing outputs based on the ALM-ESN and OESN for the MGS.
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FIGURE 7. Testing error based on the ALM-ESN and OESN for the MGS.

TABLE 3. Comparison of different models for the MGS.

Method Training time(s) Testing NRMSEg, Reservoir size Spectral Sparsity
radius

ALM-ESN 151.21 1.9268x10™ 200 0.8000 0.0200
OESN'® 163.49 3.7925x10™ 400 0.9000 0.0350
SCRP 123.51 4.6548x10™ 300 0.8000 0.0033
DESNB4 156.62 3.2968x10™ 400 0.9000 0.0237
RR-ESN[# 166.53 2.8813x10™ 400 0.8500 0.0150
Lasso-ESN™"! - 2.6532x10™ 400 0.8500 0.0150
BPSO-ESN*# 186.35 2.3823x10™ 400 0.8500 0.0150

value of the time series. The network prediction performance
is evaluated by the normalized root mean square error at
the 84™ time step (NRMSEg4) [9].

N,
NRMSEgy = Z

t=1

(zi(84) — yi(84))? _ 27)
N,o?
where z;(84) denotes the 84-step target value, y;(84) is the
corresponding network prediction value, o2 is the variance
of the desired outputs and N, is the number of independent
simulations.

To validate the performance of the ALM-ESN, different
methods are implemented. The testing outputs and error for
the MGS are given in Fig.6 and Fig.7, respectively. It is
known that the ALM-ESN fits very well and the testing errors
are limited in [—6x 10™%, 6x10™*]. Based on the 100 inde-
pendent simulations of the MGS, the comparison of training
time and testing NRMSEg4 and their relative parameters are
listed in TABLE 3. Obviously, compared with other meth-
ods, the developed ALM-ESN has slightly better predicti